Analog Communication Systems EC-413-F

Topics to be covered

DSBSC, SSB &VSB

Double Side Band Suppressed Carrier (DSBSC)

Power in a AM signal is given by

$$\left\langle s^{2}(t)\right\rangle = \frac{1}{2}A_{c}^{2} + \frac{1}{2}A_{c}^{2}\left\langle m^{2}(t)\right\rangle$$

Carrier Power Sideband power

DSBSC is obtained by eliminating carrier component
 If m(t) is assumed to have a zero DC level, then

$$s(t) = A_c m(t) \cos \omega_c t$$

Spectrum
$$\Rightarrow S(f) = \frac{A_c}{2} \left[M \left(f - f_c \right) + M \left(f + f_c \right) \right]$$

Power -

$$\diamond \langle s^2(t) \rangle = \frac{1}{2} A_c^2 \langle m^2(t) \rangle$$

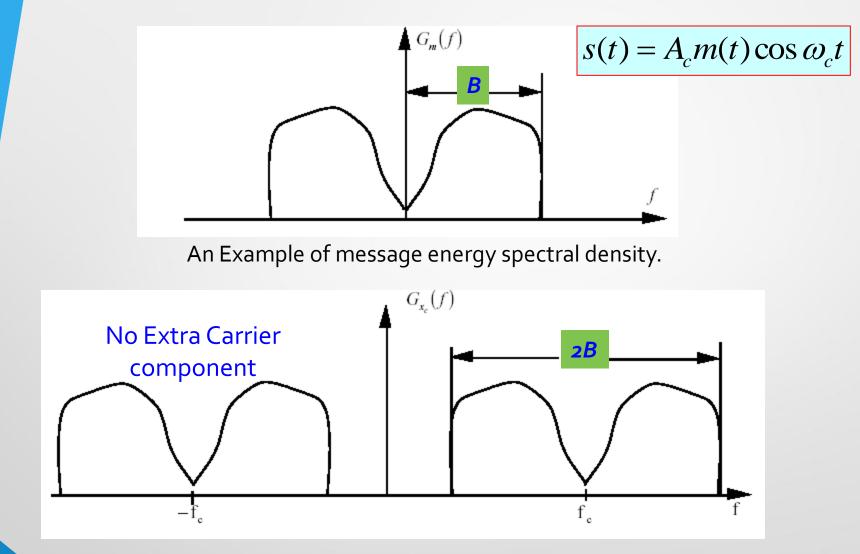
Modulation Efficiency 🔿

$$E = \frac{\left\langle m^2(t) \right\rangle}{\left\langle m^2(t) \right\rangle} \times 100 = 100\%$$

sadvantages of DSBSC:

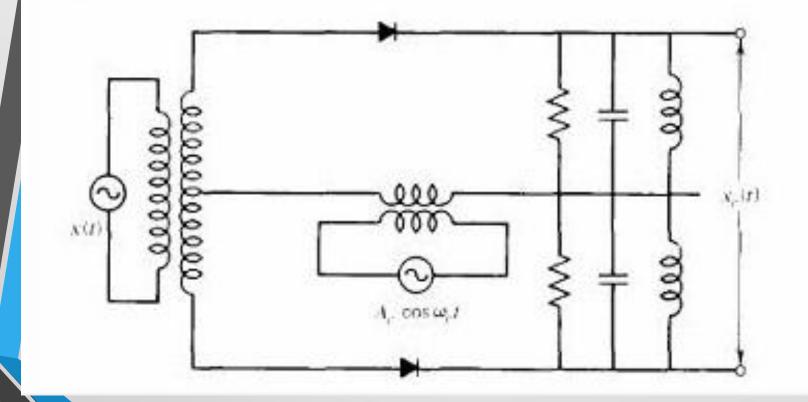
Less information about the carrier will be delivered to the receiver. **Needs** a coherent carrier detector at receiver

DSBSC Modulation

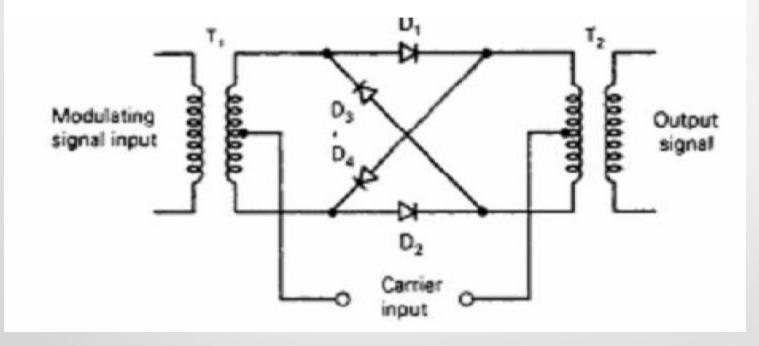


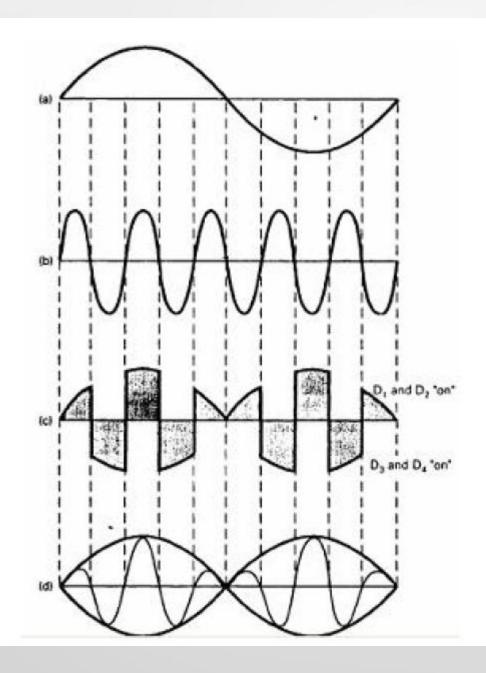
Energy spectrum of the DSBSC modulated message signal.

DSBSC Generation using Balanced



DSBSC Generation using Ring



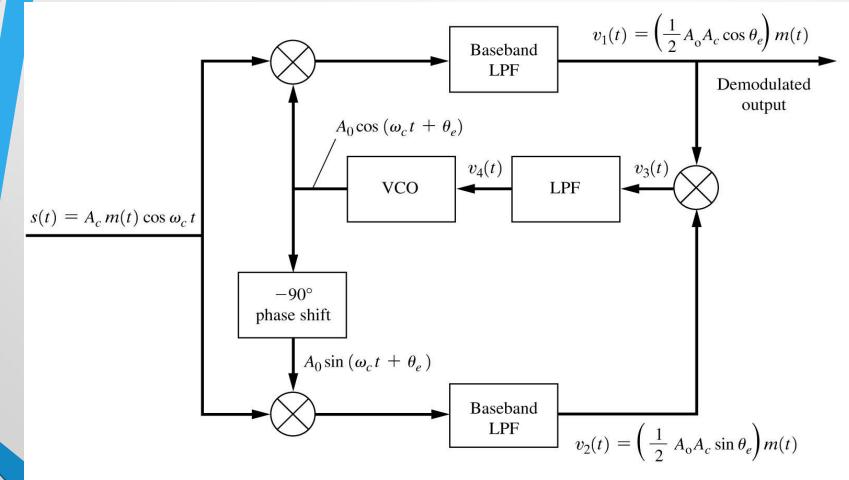


DSBSC Demodulation

- Synchronous Detection
- Envelope Detection after suitable carrier reinsertion

Carrier Recovery for DSBSC Demodulation

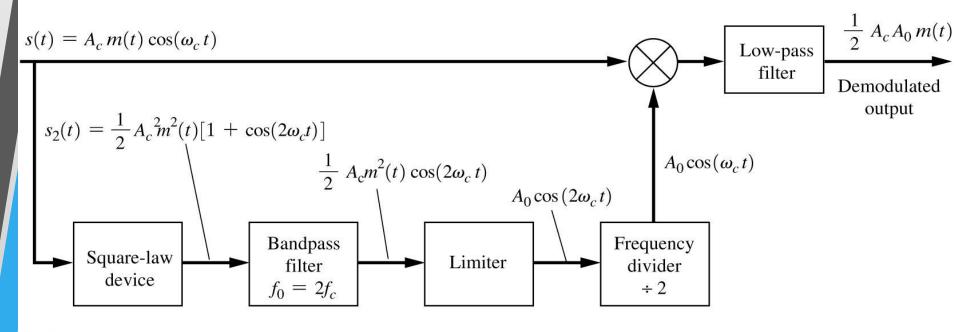
Coherent reference for product detection of DSBSC can not be obtained by e use of ordinary PLL because there are no spectral line components at f_c .



(a) Costas Phase-Locked Loop

Carrier Recovery for DSBSC Demodulation

A squaring loop can also be used to obtain coherent reference carrier for roduct detection of DSBSC. A frequency divider is needed to bring the double arrier frequency to $f_{\rm c}$.



(b) Squaring Loop

Single Sideband (SSB) Modulation

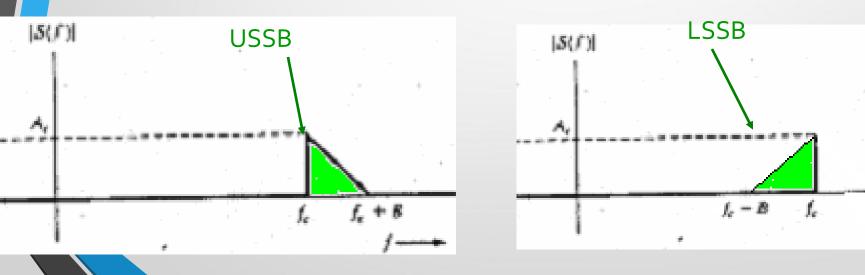
 $|f| < f_c$

 $|f| > f_c$

> An **upper single sideband** (USSB) signal has a zero-valued spectrum for

A lower single sideband (LSSB) signal has a zero-valued spectrum for

SSB-AM – popular method ~ **BW** is *same* as that of the modulating signal. ote: Normally SSB refers to SSB-AM type of signal



Single Sideband Signal

Theorem : A SSB signal has Complex Envelope and bandpass form as:

$$g(t) = A_c[m(t) \pm j\hat{m}(t)]$$

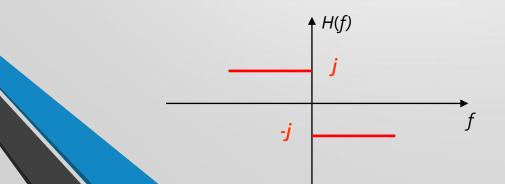
 $s(t) = A_c[m(t) \cos \omega_c t \mp \hat{m}(t) \sin \omega_c t]$

Upper sign (-) \rightarrow USSB Lower sign (+) \rightarrow LSSB

$$\hat{m}(t) = \text{Hilbert transform of } m(t) \Rightarrow \hat{m}(t) \equiv m(t) * h(t) \text{ Where } h(t) = \frac{1}{\pi t}$$

$$H(f) = \Im[h(t)] \quad \text{and} \quad H(f) = \begin{cases} -j, & f > 0\\ j, & f < 0 \end{cases}$$

Hilbert Transform corresponds to a -90° phase shift



Single Sideband Signal

roof: Fourier transform of the complex envelope

$$G(f) = A_c \left\{ M(f) \pm j \Im[\hat{m}(t)] \right\} = A_c \left\{ M(f) \pm j \hat{M}(f) \right\}$$

Using
$$\hat{m}(t) \equiv m(t) * h(t) \implies G(f) = A_c M(f) [1 \pm jH(f)]$$

$$G(f) = \begin{cases} 2A_{c}M(f), & f > 0\\ 0, & f < 0 \end{cases}$$

Recall
$$V(f) = \frac{1}{2} \{G(f - f_{c}) + G^{*}[-(f + f_{c})]\}$$

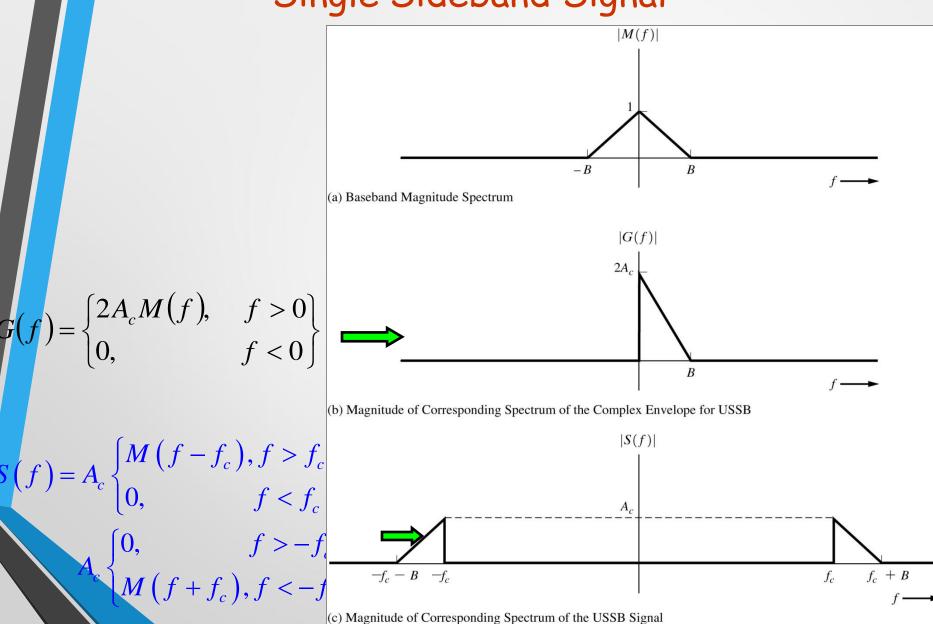
$$S(f) = A_{c} \begin{cases} M(f - f_{c}), f > f_{c} \\ 0, \qquad f < f_{c} \end{cases} + A_{c} \begin{cases} 0, \qquad f > -f_{c} \\ M(f + f_{c}), f < -f_{c} \end{cases}$$

Upper sign \rightarrow USSB

pper sign \rightarrow USSB

If lower signs were used \rightarrow LSSB signal would have been obtained

Single Sideband Signal



SSB - Power

The **normalized average power** of the SSB signal

$$\left\langle s^{2}(t)\right\rangle = \frac{1}{2}\left\langle \left|g(t)\right|^{2}\right\rangle = \frac{1}{2}A_{c}^{2}\left\langle m^{2}(t) + \left[\hat{m}(t)\right]^{2}\right\rangle$$

Hilbert transform does not change power.

$$\left\langle \hat{m}(t)^2 \right\rangle = \left\langle m^2(t) \right\rangle$$

SB signal power is:

$$\left\langle s^{2}(t)\right\rangle = A_{c}^{2}\left\langle m^{2}(t)\right\rangle$$

Power gain factor

Power of the modulating signal

The normalized peak envelope (PEP) power is:

$$\frac{1}{2}\max\left\langle \left|g(t)\right|^{2}\right\rangle = \frac{1}{2}A_{c}^{2}\left\langle m^{2}(t) + \left[\hat{m}(t)\right]^{2}\right\rangle$$

Generation of SSB

SSB signals have *both* **AM** and **PM**.

The **complex envelope** of SSB:

$$g(t) = A_c [m(t) \pm j\hat{m}(t)]$$

For the AM component,

$$R(t) = |g(t)| = A_c \sqrt{m^2(t) + [\hat{m}(t)]^2}$$

For the PM component,

$$\theta(t) = \angle g(t) = \tan^{-1}\left[\frac{\pm \hat{m}(t)}{m(t)}\right]$$

Advantages of SSB

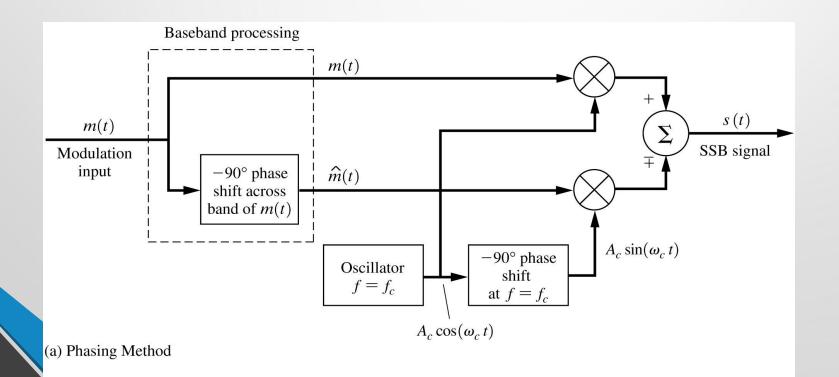
Superior detected signal-to-noise ratio compared to that of AM
SSB has one-half the bandwidth of AM or DSB-SC signals

Generation of SSB

SSB Can be generated using two techniques

- **1.** Phasing method
- **2.** Filter Method

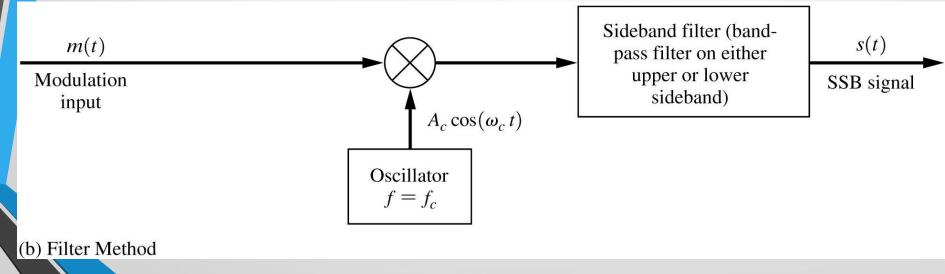
Phasing method $g(t) = A_c [m(t) \pm j\hat{m}(t)]$ This method is a special modulation type of IQ canonical form of Generalized transmitters discussed in Chapter 4 (Fig 4.28)



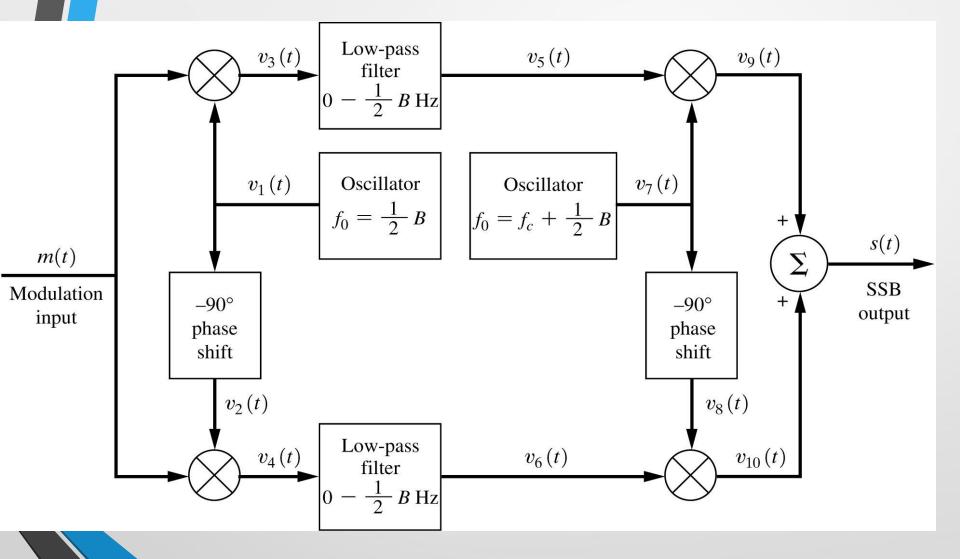
Generation of SSB

Filter Method

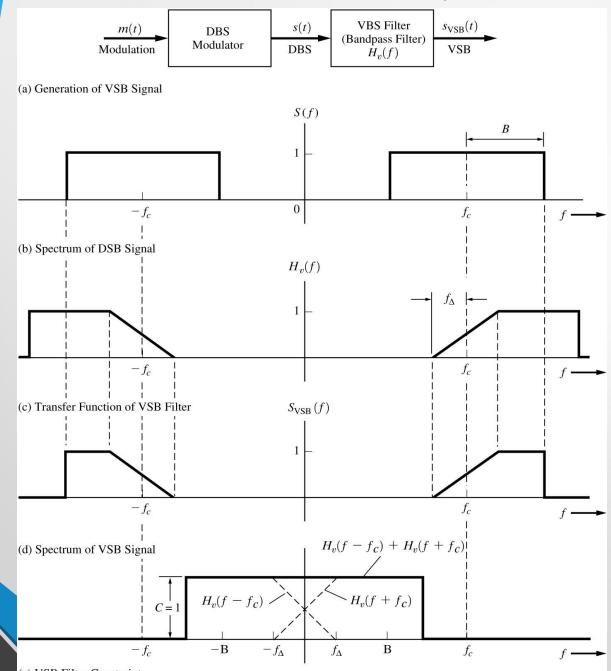
The filtering method is a special case in which RF processing (with a sideband filter) is used to form the equivalent *g(t)*, instead of using baseband processing to generate *g(m)* directly. The filter method is the most popular method because excellent sideband suppression can be obtained when a crystal oscillator is used for the sideband filter. Crystal filters are relatively inexpensive when produced in quantity at standard IF frequencies.



Weaver's Method for Generating SSB.



Generation of VSB



(e) VSB Filter Constraint